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The Ideal Waring Theorem For 
Exponents 401-200,000 

By Rosemarie M. Stemmler 

1. The Problem. The classical Waring problem is the determination of the least 
number g(k), k a positive integer, such that every positive integer is the sum of g(k) 
kth powers of integers > 0. If 

3k= 2q + r 0 < r < 2, that is, 2=[(2) 
] 

and 

I(k) = 2k + q _ 2 

the so-called ideal Waring theorem states that g(k) = I(k) for every integer k > 1. 
The known facts are that g(k) = I(k) for k = 4, $ 5 and 1 ? k < 400. The 

calculations reported here extend this result up to k = 200,000. The conclusions 
are based on the work of Dickson [2] and Pillai [6] who proved independently for 
k > 6 and k > 7, respectively, that g(k) = I(k) provided 2k > q + r + 3, and 
[51 it has been established since that the ideal Waring theorem holds if 2k > q + r, 
k = 4, 5 5. Dickson proved in addition that if 2k < q + r, k > 7 andf = 3 

g(k) = I(k) +f or I(k) +f - 1 

according as 2k = fq + f + q or 2k < fq + f + q. Pillai actually constructed a 
table of 2k, q and r for exponents to 100 which showed 2k > q + r + 3 for 4 ? k 
< 100 whereas the upper bound 400 for k is due to theoretical considerations of 
Dickson's [3]. 

Actually Mahler [4] has shown that r > 2k _ q is possible for only a finite number 
of positive integers k if at all. Mahler's theorem, a special case of which he applies 
to the Waring problem, is based on a theorem by Ridout [7] on rational approxi- 
mations of algebraic numbers. According to Ridout the constant involved is not 
determinable by his method. If and when this can be done it will be possible also 
to decide whether the calculations here have completed the proof of the Waring 
theorem (for exponents other than 4 and 5), or to which exponent they would have 
to be continued. 

To get a measure of the probability of finding an exceptional case among ex- 
ponents beyond 200,000, the fractional parts of ( ')k were tabulated within intervals 
of length '. The results in the Table below make it probable that the sequence 2, 

(3)2 (2)x ... is equidistributed (mod 1), in spite of the fact that in that table 
the interval I7, which contains the fractional parts > 3 and < 8, tends to hold a 
slightly larger share than the other intervals. Judging from the table it seems 
highly unlikely that a counterexample to the theorem will be found. 

2. The Computation. The calculation was done on an IBM 7090 computer. 
The values of (f)f' were obtained mainly by "logical" operations and were stored 
in consecutive locations, the sign bits being used as part of the binary representation 
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TAB3LE 
Distribution of the fractional parts of (3)k 

The interval It contains the fractional parts 2 (t - 1)/8 and < t/8. 

k 11 12 I3 14 15 18 17 18 

100 15 9 12 15 11 13 8 17 
200 27 24 19 30 22 27 26 25 
300 40 37 32 40 37 39 44 31 
400 53 48 44 49 53 49 58 46 
500 63 66 59 61 63 58 70 60 
600 78 79 70 72 78 70 83 70 
700 94 94 80 82 91 82 98 79 
800 105 105 90 94 104 98 111 93 
900 116 114 103 106 118 113 125 105 

1,000 128 124 122 118 131 126 133 118 
2,000 243 246 253 236 257 249 265 251 
3,000 365 400 375 369 369 '368 399 355 
4,000 476 534 497 494 496 491 534 478 
5,000 605 652 626 620 616 609 647 625 
6,000 719 784 743 746 736 736 773 763 
7,000 827 911 866 873 846 856 897 924 
8,000 962 1,036 990 998 980 979 1,015 1,040 
9,000 1,091 1,138 1,107 1,127 1,109 1,116 1,129 1,183 

10,000 1,200 1,271 1,243 1,249 1,238 1,214 1,269 1,316 
20,000 2,480 2,525 2,460 2,484 2,473 2,462 2,559 2,557 
30,000 3,732 3,739 3,696 3,738 3,708 3,710 3,831 3,846 
40,000 4,980 4,983 4,897 4,953 4,980 5,010 5,128 5,069 
50,000 6,162 6,198 6,165 6,179 6,240 6,264 6,436 6,356 
60,000 7,439 7,420 7,421 7,418 7,503 7,516 7,682 7,601 
70,000 8,665 8,646 8,688 8,683 8,743 8,763 8,914 8,898 
80,000 9,904 9,870 9,916 9,916 9,987 10,045 10,200 10,162 
90,000 11,153 11,155 11,194 11,137 11,211 11,292 11,456 11,402 

100,000 12,462 12,379 12,475 12,350 12,494 12,512 12,714 12,614 
110,000 13,644 13,648 13,709 13,597 13,775 13,775 13,991 13,861 
120,000 14,929 14,963 14,949 14,840 15,037 14,999 15,246 15,037 
130,000 16,123 16,226 16,227 16,124 16,289 16,259 16,475 16,277 
140,000 17 , 354 17,491 17,525 17,369 17,591 17,434 17,765 17,471 
150,000 18,538 18,804 18,770 18,597 18,804 18,681 19,059 18,747 
160,000 19,806 20,056 20,040 19,819 20,054 19,888 20,301 20,036 
170,000 21,038 21,246 21,244 21,108 21,355 21,206 21,559 21,244 
180,000 22,290 22,453 22,483 22,346 22,589 22,492 22,784 22,563 
190,000 23 534 23,688 23,744 23,576 23,867 23,760 24,024 23,807 
200,000 I 24,823 24,929 25,030 24,824 25,144 24,975 25,270 25,005 

o f the numbers. Only as many 36-bit words of 1 - q/2k were formed as were needed 
to show r/2k < 1 - q/2k. For 2 < k < 10,000 that inequality was established, and 
thereafter provision was made to print r/2k if the first 12 octal digits of r/2k should 
all be octal 7's since an exceptional value would certainly have to be of that form. 
No such fractional part was found to k = 200,000. As a time-saving device those 
left-most digits of q which would not affect r/2k up to k = 200,000 were progressively 
eliminated from k = 130,000 on. The first 10,000 exponents required between 4 
and 5 minutes computer time, and the last run from 190,000 to 200,000 used about 
1' hours. The distribution of fractional parts was checked through k = 20, and the 
determination of the appropriate interval tested through several sets of consecutive 
exponents. To guard against machine errors the computation was repeated through 
k = 40,000, and for larger k the last two words of (3)a+b were periodically matched 
with the product of the previously tested end digits of (ff) and ( )b. 
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Fermat Numbers and Mersenne Numbers 

By J. L. Selfridge and Alexander Hurwitz 

An IBM 7090 computer program, and results of testing Mersenne numbers 
Mp = 2- - 1 with p prime, p < 5000, have been described by Hurwitz [1]. This 
paper describes modifications made to his program, and further computational 
results. The main results are that the Fermat number F14 is composite and that 
2P- 1 is composite if 5000 < p < 6000. 

The computer program, originally written with the idea of testing 2' - 1 for 
n = M13, soon showed that the machine makes occasional errors. At least four 
machine errors occurred during runs on this number before two results agreed. 
Due partly to the immediate availability of standby time, the program was then 
launched in the region 3300 < p < 5000. 

When this work was nearly complete, the routine was modified to incorporate a 
check modulo 23- 1 after each squaring and another after each reduction modulo 
2- - 1. These checks enabled the routine to recover and proceed automatically 
after a machine error. A message was printed that a squaring (or reduction) error 
had occurred. In fact, this happened several times. 

Another modification enabled the program to compute 32 modulo the Fermat 
number Fm = 22 + 1. When n = 2- - 1 the residue was output, with a result 
congruent to -1 if and only if Fm is prime. 

After testing the program using F1o (see Robinson [5]), we proceeded to test 
F14. The computation was divided into 64 parts, and the results of the first 25 of 
these were checked against those of Paxson [3], who very kindly sent us copies of 
his intermediate residues. The rest of the computation was done twice, with com- 
plete agreement. We have also checked the final residue obtained by Paxson [3] in 
the testing of F13 . The result that F14 is composite was announced in [2]. 
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